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To understand how viscous and elastic membrane forces mediate the adhesion of
fluid-borne cells to biological surfaces under the action of specific receptor–ligand
bonds, we consider a model problem in which a two-dimensional cell interacts with a
plane adhesive surface. The cell is modelled as an extensible membrane under tension
containing fluid of constant volume. Assuming rapid binding kinetics, molecular
binding forces are described through a contact potential that is long-range attractive
but short-range repulsive. Using lubrication theory to describe the thin-film flow
between the cell and the plane, we model sedimentation of the cell onto the plane
under adhesive forces, followed by removal of the cell from the plane under the action
of an external force. Numerical simulations show how these events are dominated
respectively by quasi-steady spreading and peeling motions, which we capture using
an asymptotic analysis. The analysis is extended to model a cell tank-treading over an
adhesive wall in an external shear flow. The relation between cell rolling speed and
shear rate is determined: at low speeds it is linear and independent of the viscosity
of the suspending fluid; at higher speeds it is nonlinear and viscosity-dependent.

1. Introduction
Cell adhesion is a process that occurs widely in the body. In blood vessels, for

example, neutrophils bind to the walls of post-capillary venules in response to infec-
tion or injury as part of the inflammatory response, cancer cells bind to endothelium
in metastasis, and platelets and monocytes adhere to atherosclerotic plaques. Under-
standing and controlling cell adhesion is therefore important in treating a range of
significant diseases, and in manipulating the body’s response to implants. The binding
of a cell to an adhesive surface occurs through the action of specific intermolecular
forces: receptor molecules on the surface of the cell membrane bind to complemen-
tary ligand molecules on the substrate. The resulting adhesive forces compete with
other mechanical stresses (such as elastic forces in the cell membrane and viscous
forces in the suspending fluid) in determining whether or not the cell adheres to the
surface. Reviews of some of the extensive literature on cell adhesion can be found
in Lauffenburger & Linderman (1993), Springer (1995), Hammer & Tirrell (1996),
Jones, Smith & McIntyre (1996), Zhu (2000) and Orsello, Lauffenburger & Hammer
(2001).

The binding of neutrophils to endothelium, in particular, has been extensively in-
vestigated, and is now understood to occur as a multi-step process (see for example
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Lawrence & Springer 1991). Initially selectin receptors and their carbohydrate ligands,
which can bind to one another rapidly and reversibly, capture the neutrophil from
the blood stream and lead to ‘rolling’, in which the cell wanders slowly (at speeds
substantially less than that of the free stream) but erratically over the endothelium
(Atherton & Born 1973; Goetz et al. 1994; Lawrence 1999). Here small numbers of
receptors on the tips of microvilli (short protrusions of the cell membrane) bind tran-
siently to the vessel wall, so that at any instant the cell pivots around a small number
of individual bonds. Rolling allows the cell to survey the endothelium for signs of
inflammation. Chemoattractants released from a site of injury activate integrin recep-
tors on a rolling neutrophil, which bind to immunoglobulin ligands on endothelial
cells, leading to firmer adhesion and bringing the cell to rest. The neutrophil then
flattens against the endothelium before migrating between endothelial cells towards
its target site.

Theoretical modelling of the adhesion of fluid-borne cells to adhesive surfaces
presents significant challenges. These concern, for example, the nature of the inter-
molecular bonds, the mechanical properties of the membranes and surfaces in which
binding molecules sit, and the mechanical properties of the whole cell and its fluid en-
vironment. We review these topics briefly before addressing below the hydrodynamical
issues that are the subject of this paper.

Bond formation and breakage is a statistical process that can be modelled as
a reversible chemical reaction between populations of free and bound bonds. The
reaction is characterized by forward and reverse reaction rates. An external force F
applied to a bond will alter these reaction rates, typically increasing the rate of bond
breakage Kr . Such effects have been modelled in a number of different ways. Bell
(1978) proposed the phenomenological relationship Kr ∝ exp(σF/kBT ), where σ is a
lengthscale in the bond’s energy landscape and kBT one unit of thermal energy. A
closely related model was proposed by Dembo et al. (1988), who treated bonds as
stretched springs and assumed Kr depends on the energy in the bond (see (2.2) below).
More recent models account for the rate at which the force is applied to the bond
(e.g. Evans & Ritchie 1997). Currently a range of experimental techniques (such as
atomic force microscopy, the surface force apparatus, the biomembrane force probe
and optical tweezers) are being used to probe the effects of applied forces on bond
strength (e.g. Bongrand 1999; Leckband 2000). Kinetic rate constants and equilibrium
constants have been measured in cell systems (e.g. Alon et al. 1998; Smith, Berg &
Lawrence 1999; Piper, Swerlick & Zhu 2000), with recent studies supporting the use
of Bell’s (1978) model in describing selectin bonds, for example (Chen & Springer
2001).

The competition between adhesive forces and elastic stresses in a cell membrane
was described by Evans (1985), who computed local, static shapes of a membrane
(modelled as a beam with bending stiffness) in the neighbourhood of an adhesive
surface; the shape of complete vesicles subject to an adhesive potential at a wall
has since been computed by, for example, Seifert & Lipowsky (1990) and Seifert
(1991). Dembo et al. (1988) extended Evans’ tape-peeling analysis by introducing the
spring-based bond model described above, determining the equilibrium contact angle
of a statically adhered membrane under given tension, and then showing how bond
kinetics control dynamic spreading and peeling speeds when the peeling angle (or
tension) is either greater than, or less than, its equilibrium value. Various extensions
of this model have been proposed to account for the effects of non-specific forces,
clustering of adhesion receptors (Ward & Hammer 1993) and limited ligand density
(Ward, Dembo & Hammer 1995).
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Hammer & Lauffenburger (1987) introduced hydrodynamics to the problem of
cell adhesion by exploiting classical solutions (Goldman, Cox & Brenner 1967a, b)
for the force and torque on a smooth rigid sphere rolling in a shear flow over a
flat plane at zero Reynolds number. They balanced hydrodynamic forces on the cell
with adhesive forces arising from distributed bonds in a small region at the base
of the cell, close to the plane, employing Bell’s (1978) kinetic model, to determine
the number and strength of receptors required for adhesion. Since only a few bonds
are involved in neutrophil rolling, Hammer & Apte (1992) subsequently introduced
‘adhesive dynamics’ simulations. Here a rigid sphere is coated with a distribution of
adhesive springs: each spring represents a microvillus with a receptor molecule at its
tip. The sphere moves close to the wall, with transient binding occurring between
a few springs and the wall. The motion of the sphere is computed by balancing
hydrodynamic forces and torques (computed using the results of Goldman et al.
1967a, b) with those arising from a few adhesive contacts. (A similar approach was
also taken by Tözeren & Ley 1992.) The Monte Carlo simulations used in adhesive
dynamics provide a natural means for studying the stochastic nature of neutrophil
rolling. Recent simulations support the use of Bell’s (1978) model for a wide class
of receptor–ligand pairs (Chang, Tees & Hammer 2000), and boundary-element
techniques have been exploited to describe cell–cell interactions (King & Hammer
2001). Alternative stochastic models for binding kinetics and transient cell adhesion
have also been developed (e.g. Zhu 2000; Zhu, Bao & Wang 2000).

A recent refinement of the microvillus-covered-sphere model of neutrophil rolling
was presented by Zhao, Chien & Weinbaum (2001), who included the effects of weak
gravity, causing the cell to sediment slowly onto the endothelium. Zhao et al. suggest
that this very weak body force combined with a strong shear flow can lead to large but
short-lived contact forces between microvilli tips and the wall, sufficient for the tips to
penetrate the glycocalyx (the layer of charged glycoproteins) coating endothelial cells.
This model is used to explain the shear threshold required for L-selectin-mediated
binding seen experimentally (Finger et al. 1996), although alternative mechanisms
have also been proposed (e.g. Chen & Springer 1999; Chang & Hammer 1999).

Despite the success of adhesive dynamics simulations and related studies, it is
important to recognize that adhering cells such as leukocytes do not always have the
hydrodynamical properties of smooth rigid spheres (Tissot et al. 1992; Damiano et al.
1996). For example, Wu et al. (1998) demonstrated using integrin-mediated adhesion
of epithelial cells to laminin that increased cell deformability reduces mean rolling
speeds. Sheikh & Nash (1998) also showed how adhesion properties of leukocytes
are altered if cytoskeletal structures are disrupted. Such observations have motivated
computational studies of flows over adhered cells with non-spherical shapes (e.g.
Olivier & Truskey 1993; Brooks & Tözeren 1996; Gaver & Kute 1998). Others
have computed shear flows over deformable model cells statically adhering to an
interface (Kan et al. 1999): here studies of flows over liquid drops adhering to plane
surfaces are relevant (e.g. Dussan V. 1987; Feng & Basaran 1994; Li & Pozrikidis
1996; Dimitrakopoulos & Higdon 1997; Schleizer & Bonnecaze 1999). These studies
demonstrate how static drops (and cells) require a difference between their front and
rear contact angles to balance the viscous forces due to the oncoming shear flow,
provided viscous forces (measured relative to surface tension forces by a capillary
number) are small enough for a steady drop configuration to be possible.

There have been only a few computational studies of deformable drops or cells
rolling or sliding over adhesive surfaces. Schleizer & Bonnecaze (1999) introduced
slip at an adherent drop’s contact lines, and showed how a steady sliding motion
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is possible provided the capillary number is not too great. Lei, Lawrence & Dong
(1999) used CFD methods to determine the rolling speed of a two-dimensional cell
(modelled as a membrane under tension containing viscous fluid) in a planar channel,
where the cell binds to one channel wall with adhesive bonds governed by kinetics of
the kind proposed by Dembo et al. (1988). The speed of rolling was determined by
an energy dissipation argument. Their results showed that despite a high cytoplasmic
viscosity, the majority of viscous dissipation occurs in the fluid outside the cell,
although increased cytoplasmic viscosities could reduce rolling speeds significantly.
In a related computational study, Dong et al. (1999) highlighted the role of the small
‘peeling’ zone at a rolling cell’s trailing edge in controlling cell rolling speeds. Other
studies (Cantat & Misbah 1999; Seifert 1999; Sukumaran & Seifert 2001) of Stokes
flows over deformable drops or vesicles adhering to a wall have demonstrated that
viscous effects can give rise to a lift force arising from large lubrication pressures in
the thin film beneath the vesicle and the wall, which can be sufficient to completely
lift the vesicle off the wall.

The aim of the present study is to use a deterministic, continuum model to explore
the competition between specific binding forces, cell membrane stresses and viscous
forces in the adhesion of a cell to a plane wall. In contrast to previous computational
studies (e.g. Lei et al. 1999; Dong et al. 1999; Dong & Lei 2000), we exploit asymptotic
methods as far as possible to understand how a cell spreads over, peels away from,
or rolls over an adhesive surface. In particular, we use lubrication theory to describe
the flow in the thin liquid film between the cell and the wall, and consider parameter
regimes in which the flows in this region control the motion of the whole cell. To keep
the model tractable, we restrict attention to a two-dimensional geometry, and model
the cell as a thin membrane under tension containing incompressible fluid having
viscosity low enough that it can be treated as inviscid. We model binding kinetics
following Dembo et al. (1988), but to highlight hydrodynamic effects we assume bond
formation and breakage occur rapidly compared to flow timescales. The model then
has the attractive feature that the bonds can be represented by an adhesive potential
that is long-range attractive but short-range repulsive. Our results therefore share
common ground with studies of thin liquid layers which rupture or spread under
the influence of long-range intermolecular forces (e.g. Williams & Davis 1982; Mitlin
1993; Sharma & Jameel 1993; Oron 2000; Eres, Schwartz & Roy 2000). This idealized
model does not seek to model a specific cell system (such as rolling neutrophils): our
aim instead is to highlight hydrodynamic mechanisms that may be important in a
range of applications in cell adhesion and, more generally, colloidal aggregation.

After describing the model (§ 2), we consider three closely related problems. First
(§ 3), we treat a freely suspended cell that moves normally towards a wall under the
action of adhesive forces (which we call ‘sedimentation,’ although gravitational effects
are neglected here). As binding forces deform the cell membrane, it spreads over the
wall at a rate that is limited (in this model) by viscous dissipation in the suspending
fluid. We use thin-film asymptotics to predict spreading rates. Second (§ 4), we suppose
an external force is applied to a bound cell, lifting it upwards off the wall (simulating
micropipette aspiration (Hochmuth 2000)). Once again, hydrodynamic pressures in
the suspending fluid contribute to the dynamic adhesive force and influence the rate at
which the membrane peels of the wall. The dynamic shape assumed by the membrane
as it binds to the wall is quite distinct from that which arises as the cell is pulled
off the wall. Finally (§ 5), we consider a cell that is adhered to a wall but which is
also subject to an external shear flow. The cell tank-treads over the wall, spreading
at its front and peeling at its rear at a rate limited by viscous dissipation in the fluid
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outside the cell; we use asymptotic approximations to obtain a prediction for the
rolling speed as a function of the imposed shear rate, the strength and nature of the
binding forces, and the membrane tension.

2. The model
In this section we derive the evolution equation and associated boundary conditions

((2.14), (2.15), below) used to describe the sedimentation of a cell onto, or aspiration
from, an adhesive plane wall. We first describe the model for the intermolecular bonds
(§ 2.1) and their effect on static cell configurations (§§ 2.2, 2.3), and then explain briefly
how lubrication theory can be used to model the flow of the thin liquid layer between
the cell and the wall (§ 2.4).

2.1. Adhesion bonds

Our model for the bonds between a cell membrane and an adjacent plane wall follows
closely that proposed by Dembo et al. (1988), so only a brief summary is given here.
We suppose ligand molecules are uniformly and densely distributed on the substrate,
and receptor molecules are uniformly distributed on the cell membrane with density
Atot bonds per unit area. We suppose a bound receptor–ligand pair behaves like a
simple Hookean spring with undisturbed length λ and spring constant κ. The bonds
are stretched normally from the wall to the cell membrane, supplying a vertical force
on the cell. While this assumption may be unrealistic in general, it is a reasonable first
approximation when the membrane slope in the region of bond formation is small.

We assume that the formation and breakage of adhesion bonds is a reversible
chemical process of the type Af 
 Ab, where Af is the density of free adhesion
molecules on the membrane, Ab is the density of consummated bonds and Atot =
Af + Ab. The forward and reverse reaction rates are Kf and Kr , each of which is
assumed to be a function of the cell-to-surface gap H? measured normally from the
wall.

Provided reaction rates are rapid relative to the timescale of any flows, so that the
bond distributions are always in equilibrium, then AfKf = AbKr , so that

Ab(H
?) =

AtotKf(H
?)/Kr(H

?)

1 + [Kf(H?)/Kr(H?)]
. (2.1)

It is then assumed that the relative chance of a bond forming or breaking depends
on the energy E held within that bond via a Boltzmann distribution, so that the
association constant is

Kf(H
?)

Kr(H?)
= exp

(
− E

kBT

)
, (2.2)

where kB is the Boltzmann constant and T the absolute temperature. Treating each
bond as a spring, E(H?) = E0 + 1

2
κ(H? − λ)2 where E0 is the energy held within an

undisturbed bond. Writing Keq = Kf(λ)/Kr(λ), (2.1) and (2.2) give, for Keq � 1,

Ab(H
?) = Atot Keq exp

(
− κ

2kBT
(H? − λ)2

)
. (2.3)

The assumption of low binding affinity Keq � 1 is made here only in order to simplify
the model while retaining its most important qualitative features, and is easily relaxed.
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Figure 1. Schematic illustration of a static cell bonded to a plane wall by adhesion molecules of
equilibrium length λ. Each point of the cell boundary (X?,H?) is parameterized by the dimensional
arc length s?.

2.2. Cell mechanics

We model a cell as a thin, two-dimensional, extensible membrane subject to tension
but having negligible bending stiffness, surrounding a fluid interior of fixed volume
per unit length. The viscosity of the cell’s interior is assumed to be low enough that
it behaves as if it were inviscid. When undisturbed, the cell is circular with radius R;
it deforms under the action of adhesive forces. The effects of gravity and non-specific
forces acting on the cell are neglected. We define X?(s?) and Y ? = H?(s?) to be the
(dimensional) Cartesian coordinates of the cell membrane with respect to the wall,
s? the arc length along the membrane, p? the pressure in the fluid outside the cell
and P?

c the pressure inside the cell, as illustrated in figure 1. The stress balance on
the membrane when the cell and fluid are in static equilibrium is then (Dembo et al.
1988)

Ab(H
?)κ(H? − λ)(X?

s?n−H?
s?t) + (P?

c − p?)n = C?T?n− T?
s?t. (2.4)

Here vertical bonds, acting as springs, and the transmembrane pressure difference,
are balanced by the tension T ∗ in the cell membrane. Subscripts s? denote derivatives,
C? is the membrane curvature and n and t are normal and tangential unit vectors.
We non-dimensionalize by scaling lengths on R (so that H? = RH , etc.), tension on a
reference tension τ and pressures on τ/R. Equations (2.3) and (2.4) then give, in the
normal and tangential directions,

CT =
M(H − ε)

ε exp
( γ

2ε2
(H − ε)2

) cos θ+ Pc − p, Ts =
M(H − ε)

ε exp
( γ

2ε2
(H − ε)2

) sin θ, (2.5a, b)

where

Xs = cos θ, Hs = sin θ, C = θs. (2.6)

Static cell shapes are then parameterized by

ε =
λ

R
, M =

κAtotKeqR
2ε

τ
, γ =

κλ2

kT
. (2.7)

Here ε represents the length of the adhesion molecules relative to the size of the cell,
M represents the total adhesive force of the adhesion molecules relative to the cell
membrane tension and γ relates the energy of a bond to thermal energy fluctuations.

Neutrophils provide a well-studied system from which we can estimate typical
parameter values. The P-selectin molecule extends about 40 nm from the endothelial
cell membrane, so when combined with its ligand PSGL-1 it is reasonable to take
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Figure 2. Schematic diagram of the three regimes of static adhesion, showing typical lengthscales
of asymptotic regions.

λ ≈ 100 nm as an estimate of the length of the unstressed bond. This is of similar
magnitude to the static length of a microvillus (0.3 µm, Shao, Ting-Beall & Hochmuth
1998). Taking R ≈ 4 µm gives ε ≈ 0.025. A P-selectin/PSGL-1 bond is formed in
series with a more extensible microvillus, with stiffness κ ≈ 0.04 g s−2 (Shao et al.
1998). Membrane tension is τ ≈ 0.024 g s−2 (Hochmuth 2000), and Atot = 20 µm−2

is comparable to values used in Smith et al. (1999). This gives M ≈ 13Keq . Direct
measurements of Keq are scarce, but values in the hundreds have been used in previous
models (e.g. King & Hammer 2001). With kBT ≈ 4× 10−14 g cm2 s−1, γ ∼ 100. There
may of course be considerable variation in these parameters between different cell
systems. In simulations below we take M = 100, γ = 1 and assume ε� 1; asymptotic
results will confirm that these simulations are representative of a broad range of
parameter values.

2.3. Static cell shapes

In static equilibrium, we impose symmetry about X = 0, and take p = 0; Pc must
be chosen so that the cell’s dimensionless area remains equal to π. Equations (2.5),
(2.6) can then be solved to give the shape of a static cell bound to a wall. Here we
briefly consider an asymptotic solution of this problem, assuming ε � 1. We split
the cell into two distinct regions: an outer region, an O(1) distance from the wall,
where adhesion forces are negligible in (2.5); and an inner region adjacent to the wall,
where H = O(ε) and the spring terms in (2.5) are significant. In the outer region, in
the absence of any other external forces, the cell has uniform tension and uniform
curvature. It is convenient to define τ to be the dimensional tension of the cell in this
region, so that here the membrane is circular and T = 1.

Where the cell is close to the wall (the inner region), we write H(X) = εh(X) so
that (2.5a, b) can be combined to give(

1− εM/γ

exp( 1
2
γ(h− 1)2)

)
εhXX

(1 + (εhX)2)3/2
=

M(h− 1)

exp( 1
2
γ(h− 1)2)

√
1 + (εhX)2

+ Pc. (2.8)

Solutions of (2.8) must be matched to the circular membrane in the outer region.
Three distinct parameter regimes emerge, illustrated in figure 2.

For εM/γ = O(1), the cell membrane is flat with h = 1 along the majority of the
inner region, which has O(1) length, but it has sharp corners where it connects to
the outer solution at X = ±Xc, say. Assuming cell membrane gradients are O(1) at
the corner, we write X = Xc + εx, and discard the O(ε) pressure term in (2.8). The
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resulting equation can be integrated exactly (Dembo et al. 1988), giving

hx = HX →
(

1

(1− εM/γ)2
− 1

)1/2

as x→∞, (2.9)

which provides the effective equilibrium contact angle where the membrane meets the
wall. A geometrical argument then yields the radius of the circular part of the cell r,
the cell’s internal pressure Pc = r−1, the vertical distance of the cell centre from the
wall Dc and the contact length of the bottom of the cell with the wall 2Xc, where

r = π1/2(π− tan−1 Ω + (1− εM/γ)2Ω)−1/2,

ΩDc = Xc = (1− εM/γ)Ωr, Ω = ((1− εM/γ)−2 − 1)1/2.
(2.10)

The cell shape in the outer region depends only on the ratio εM/γ. The limit
εM/γ → 1 represents the limit of maximum adhesion, in which the outer solution is
semicircular. The present model is not self-consistent for εM/γ > 1.

Reducing εM/γ corresponds to reducing the strength of adhesion molecules or
making the cell less deformable. If εM/γ = O(ε), there is a single inner region
of length O(ε1/2) (figure 2c). We focus in this paper on the intermediate case, for
which ε � εM/γ � 1 (figure 2b). Here the half-length of the bound portion of the
cell membrane and the effective contact angle in the corner region both shrink to
(2εM/γ)1/2 + O((εM/γ)3/2), but the corners remain distinct from the uniform region
between them. This limit will allow us to use lubrication theory to describe the flow of
liquid between the cell and the wall, while also exploiting the asymptotic separation
of scales between the film and corner regions. In this limit r = Pc = 1 +O((εM/γ)3/2);
since the cell membrane is not significantly stretched from its original circular shape,
τ is effectively the tension of the cell when undeformed.

The model presented so far describes a static cell bound to an adhesive wall. A
bound cell may be removed from the wall experimentally by micropipette aspiration.
We model an aspirated cell by applying a vertical force per unit length 2kε1/2 to the
top-most point of the cell, where s = s0, say. This is represented by adding a term
2kε1/2δ(s− s0) to (2.5a). Then, for ε� εM/γ � 1, the outer solution is now two arcs
of circles meeting at s = s0, each subtending an angle kε1/2 to the horizontal at s = s0
to satisfy a local vertical force balance. r, Pc, Dc and Xc must also be modified from
the values given in (2.10); in particular,

Xc = ε1/2((2M/γ)1/2 − k) + O((εM/γ)3/2), (2.11)

Dc = 1 + (2kε1/2/π)− (25k2ε/(4π))− (εM/γ) + O((εM/γ)3/2), (2.12)

so that if k > (2M/γ)1/2 the cell will be completely removed from the wall.

2.4. Cell and fluid dynamics

We use lubrication theory (Oron, Davis & Bankoff 1997) to describe transient flows in
the thin gap between the cell and the wall, where now h is a function of x and time t.
We formulate the problem in the point-contact regime (figure 2c) by scaling Y = εy,
X = ε1/2x; this formulation incorporates as a special case the limit ε � εM/γ � 1.
Since the fluid layer is thin, the pressure p in the fluid film beneath the cell is
non-uniform but independent of y (to leading order in ε). Pressure gradients in the
film drive a fluid flux, which is resisted by viscous forces. To keep the model simple,
we assume fluid motions can be characterized by a constant viscosity µ; it is likely
that surface structures such as glycocalyx or membrane roughness would significantly
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alter the permeability of the gap between the cell and the wall (see, for example,
Feng & Weinbaum 2000), but we do not account for such effects explicitly here. With
horizontal velocities scaled on τε3/2/µ, vertical velocities on τε2/µ and time on Rµ/ετ,
the viscous contribution to the normal stress is O(ε) smaller than the pressure, and
variations in tension due to viscous tangential stress are O(ε) smaller than the mean
value of the tension τ, so neither effect enters (2.5), (2.6). Thus the normal stress
condition becomes

p(x, t) = 1 +
M(h− 1)

exp( 1
2
γ(h− 1)2)

− hxx + O(ε, εM/γ). (2.13)

The three contributions in (2.13) arise respectively from the pressure in the cell, the
effects of binding forces (which are equivalent to a conjoining/disjoining pressure
which represents a force that is long-range attractive but short-range repulsive), and
membrane tension. We impose p → 0 as x → ±∞, to match with the external fluid
pressure far from the thin-film region.

The horizontal fluid flux under the cell is Q = −pxh3/12; the effects of inertia can
be neglected provided ρτε3R/µ2 � 1, where ρ is the density of the liquid. Combined
with (2.13) and the mass conservation equation ht+Qx = 0, we obtain a dimensionless
evolution equation for the thickness of the liquid film beneath the cell,

ht − 1

12

[
h3

(
M(h− 1)

exp( 1
2
γ(h− 1)2)

− hxx
)
x

]
x

= 0, (2.14)

which is solved subject to boundary conditions

hx(0, t) = hxxx(0, t) = 0, h→ 1
2
x2 + kx+ β(t) as x→∞. (2.15a, b)

Equation (2.15a) ensures symmetry about x = 0, which is appropriate for the sedi-
mentation and aspiration problems considered below; (2.15b) allows matching with
the circular outer solution. The function β(t) must be determined as part of the
solution; it measures the vertical displacement of the cell centre, which lies at X = 0,
Y = Dc = 1 + εβ when k = 0. When the cell is sedimenting to the wall under the
action of adhesive forces alone the outer solution is perfectly circular and k = 0.
Setting k > 0 models aspiration, when a vertical point force 2kε1/2 is applied to the
top of the cell.

3. Sedimentation onto an adhesive wall
We present first solutions of (2.14), (2.15) with k = 0, modelling the sedimentation

of a cell towards a plane wall under the action of adhesive intermolecular forces.
We take h(x, 0) = 1

2
x2 + β(0), where β(0) = 5, so that the cell is initially circular

and a dimensional distance 5λ from the wall. Numerical solutions are presented in
§ 3.1: they were obtained by discretizing (2.14), (2.15) with finite differences in space
and time-stepping using an implicit routine from the NAG library. An asymptotic
description of the resulting quasi-steady spreading motions is presented in § 3.2.

3.1. Numerical results

Most of the solutions presented below used 1000 grid points over a domain of length
20. The accuracy of the results was checked by independently varying the number of
grid points and the domain length.

Figure 3 shows h(x, t) and p(x, t) (defined in (2.13)) during sedimentation onto an
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Figure 3. Solutions of (2.14), (2.15) with k = 0, M = 100, γ = 1 and β(0) = 5, showing a cell
spreading onto an adhesive surface. Solutions are shown for t = 1 (solid) and at increasing time
increments of 0.04. (a) Film thickness h versus x; near the wall, the cell membrane moves from left
to right with time. (b) p versus x; the pressure wave moves from left to right.

adhesive wall for M = 100 and γ = 1. Figure 4(a) shows β(t) and xmin(t) for the same
simulation, where x = xmin (defined by hmin = h(xmin, t)) gives a good indication of
the length of the portion of the cell membrane which is firmly attached to the wall.
The rate at which the fluid layer thins is shown in figure 4(b), which plots h(0, t) and
hmin(t). We can identify four distinct phases of the adhesion process, marked (i)–(iv)
in figure 4.

In the first phase, which we term drifting, the cell remains far enough away from
the wall for the adhesion molecules to have little effect on the cell. The cell remains
roughly circular and moves slowly towards the wall under the effect of very weak
long-range forces (see h(0, t) = hmin(t) in figure 4b). This phase lasts until t ≈ 1 in this
simulation. The cell then enters the short capture phase, where the base of the cell
is close enough to the wall for adhesive forces to become substantially stronger. The
base of the cell is quickly pulled down and bonded to the wall (figure 4b, phase (ii)),
which squeezes fluid sideways, forming pockets of trapped fluid at either side of the
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Figure 4. (a) Cell centre displacement β(t) (symbols) and xmin(t) (solid line). The dashed line
shows the asymptotic estimate of β(t) from (3.2), (3.24), (3.25); the dotted line shows (3.16).
(b) hmin(t) (solid) and h(0, t) (dashed), computed using (2.14), (2.15) for M = 100, γ = 1, β(0) = 5.
(i)–(iv) correspond to drifting, capture, spreading and draining phases respectively.

cell base. This creates a distinct concave bulge in the cell membrane (e.g. t = 1.04,
figure 3a). A disturbance is then transmitted in a whip-like fashion along the cell
membrane to the outer edge of the flow domain. This is illustrated in figure 5, which
shows xD versus t, where xD(t) tracks the most right-hand maximum of h − 1

2
x2,

providing a measure of the position of the advancing disturbance.
We can see from figure 4 (phase (ii)), which shows a transient hump in β(t) and

a rapid fall in h(0, t), that the primary effect of the sudden sideways displacement of
fluid beneath the cell is, surprisingly, to lift the centre of the cell upwards during the
brief capture phase. The way in which the whip-like disturbance spreads along the cell
membrane, where the membrane is far enough from the wall for adhesion forces to be
insignificant, can be understood by considering (2.14) without the spring term. Since
h ∼ 1

2
x2 for large x, a balance between the first and third terms in (2.14) suggests
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Figure 5. Symbols are numerical data for the disturbance’s leading edge xD(t) during the capture
phase for M = 100, γ = 1, β(0) = 5. The dashed line is 0.9(1.12− t)−1/2.

that xD scales like (t0 − t)−1/2 as t→ t−0 , for some t0. Numerical solutions in figure 5
are consistent with this scaling, with t0 ≈ 1.12 for these parameter values, indicating
that the system exhibits a weak finite-time singularity. Computations suggest that the
amplitude of the disturbance decays like (t0 − t)2, although we were unable to find a
self-similar solution of (2.14) consistent with these observations.

After capture, the cell enters the longer quasi-steady spreading phase of cell adhesion
((iii) in figure 4). Here, the base of the cell spreads smoothly along the wall towards
its final equilibrium configuration (figure 3a). The length of the bound portion of the
cell membrane increases to its final static contact length xc = (2M/γ)1/2, in agreement
with (2.11). The cell centre moves downwards towards the wall (figure 4a), with
β → −M/γ as t increases so that Dc → 1 − εM/γ, again in agreement with the
static result (2.12). A travelling pressure wave (figure 3b), which is coincident with the
membrane corner, advances towards x = xc. The pressure in the film deposited behind
the advancing membrane is large, indicating that the film is slightly thicker than the
equilibrium thickness h = 1. The pressure (and film thickness) immediately behind
the travelling wave decrease as the speed of the advancing corner reduces to zero,
leaving a non-uniform pressure distribution at the end of the spreading phase. Early
in spreading, when the corner is moving rapidly, the pressure in the fluid decays slowly
to zero over a substantial distance ahead of the advancing corner. The elevated fluid
pressure ahead of the corner creates a weak bulge in the membrane in this region.

Finally, once the membrane corner has reached its equilibrium position, fluid
trapped beneath the cell is squeezed out by spring forces into the surrounding fluid,
as illustrated in figure 4(b) (phase (iv)), where h(0, t) falls slowly to h = 1 as t increases.
We call this last stage the draining phase. The pressure in figure 3 is shown up to
the end of the spreading phase; thereafter it falls to zero as t increases. The decay is
governed approximately by the linear diffusion equation

h′t =
M

12
h′xx, (3.1)

taking h = 1+h′, |h′| � 1, M � 1 in (2.14). Since the trapped film has length O(M1/2),
draining occurs over O(1) timescales (figure 4b).
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Figure 6. Schematic diagram of the asymptotic regions during the spreading phase
of cell adhesion.

3.2. Spreading asymptotics

Figures 3 and 4(a) show that the spreading phase ((iii) in figure 4) dominates the
adhesion process in sedimentation. Here we present an asymptotic analysis of the
cell’s motion during this phase, assuming M � 1 and γ = O(1) in (2.14), (2.15), which
provides explicit predictions of β(t), for example, and which helps us understand the
physical balances controlling the rate at which a cell spreads over an adhesive surface
in a fluid environment.

We assume that the membrane exhibits a distinct corner that lies between x = 0
and x = xc, but which is not too close to either extreme, and that the motion is
quasi-steady. We then split the solution domain into the four asymptotic regimes
illustrated in figure 6. In the film region, the base of the cell is firmly attached to
the wall by adhesion molecules and h ≈ 1. The curvature of the cell membrane in
this region is small, so that the spring term dominates in (2.14). In the corner region,
the membrane curvature is large, and the spring term and curvature term in (2.14)
balance over a lengthscale O(M−1/2). In the bending region, which is present when the
corner moves sufficiently rapidly, the adhesion molecules have become disconnected
and viscous stresses compete with membrane tension, and the membrane can exhibit
a characteristic bulge. In the outer region the membrane is quadratic and in static
equilibrium, which matches to the circular cell shape far from the wall.

Let the contact length between cell and wall be given by x0(t), where an explicit
definition of x0 will be given later, but where we assume for now that x0(t) ≈ xmin(t).
We define the spreading speed as

V (x0) = x0t (3.2)

and make a quasi-steady travelling-wave approximation, so that in the corner region
h(x, t) = h(z) where z = M1/2(x− x0) and x = x0(t). Equation (2.14) becomes

V

M3/2
(1− h)− h3

12

(
(h− 1)

exp( 1
2
γ(h− 1)2)

− hzz
)
z

= 0, (3.3)

taking h ∼ 1 to leading order as z → −∞. Assuming V � M3/2, we can solve (3.3)
using a perturbation expansion of the form

h(z) = h0(z) +
V

M3/2
h1(z) + o

(
V

M3/2

)
. (3.4)



394 S. R. Hodges and O. E. Jensen

y

1

Film

Corner

Outer

x

1

xmin x0

M –1/2 h~1
2x2+b

Figure 7. Schematic diagram of the three inner regions during slow spreading.

The leading-order term h0(z) is exactly the static corner solution discussed in § 2.3, for
which h0 ∼ (2/γ)1/2z + A0/γ

−1/2 + 1 as z → ∞, where a numerical solution indicates
that A0 ≈ 0.626 (consistent with (2.9)). Including the linear problem for h1, we find

h ∼ 1 +
ez

γ
+

V

M3/2

(
c+

6zez

γ
+ c0e

z

)
+ . . . as z → −∞, (3.5)

where c and c0 are constants. The c0e
z term arises from an eigensolution of the

homogeneous problem for h1 that is proportional to h′0(z); c will be determined
below. It follows that the leading-order depth of the fluid film laid down behind the
moving corner in the film region (figure 6) hF , and the corresponding pressure pF , are

hF (x) ∼ 1 + cV (x)/M3/2, pF ∼ cV (x)/M1/2 (0 < x < xc), (3.6)

where V (x) is the speed of the corner when it passed station x (a relation determined
below).

The general behaviour of h0 and h1 for large z is given by

h ∼
√

2

γ
z +

A0√
γ

+ 1 +
V

M3/2
(B2z

2 − 6γz log z + B1z) + . . . (z →∞), (3.7)

for constants B1 and B2, where B2 = c1 − (c/2) for some constant c1 (c1 arises
from a contribution from the particular integral for h1, and c multiplies a second
eigenfunction of the homogeneous problem). For γ = 1, we find numerically that
c1 ≈ 4.021.

We now consider two alternatives: rapid initial spreading, and slower spreading as
the corner approaches its equilibrium position. Since slower spreading is simpler, we
consider that case first.

3.2.1. Slow later spreading

When x0 is close to its equilibrium location xc = (2M/γ)1/2, we match the corner
region directly to the outer region (neglecting the bending region in figure 6), as
sketched in figure 7. We first write the outer solution as

h ∼ 1
2
x2 + β = 1

2
(x− x0)

2 + x0(x− x0) + 1
2
x2

0 + β. (3.8)
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To formally match the quadratic term in (3.8) with that in (3.7), we set V = M1/2Ṽ ,
where Ṽ = O(1), and also write, for M � 1,

x0 =

(
2M

γ

)1/2

+ x1

logM

M1/2
+

x2

M1/2
+ . . . , β = −M

γ
+ β1logM + β2 + . . . . (3.9)

To leading order, h ∼ x0(x− x0) when x− x0 = O(1) (making x0 the effective contact
angle); the dominant terms in (3.3) here are given by the widely studied equation
often named after Tanner (1979; see also Duffy & Wilson 1997)

−Vh+
h3hxxx

12
= 0 (3.10)

(written in terms of x), which describes the competition between the effects of the
wall moving with respect to the membrane and membrane tension. Using (3.10) we
find that, with the first viscous correction,

h ∼ 1
2
(x− x0)

2 + x0(x− x0) + 1
2
x2

0 + β − 12V

x2
0

(x− x0) log(x− x0) (3.11)

in the inner limit of the outer region. Matching to (3.7) using intermediate variables
(Van Dyke 1975) gives

(2/γ)1/2x1 + β1 = 0, A0γ
−1/2 + 1 = β2 + x2, B2Ṽ = 1

2
, x1 = −3γṼ , (3.12)

so that

x0(V ) =

(
2M

γ

)1/2

− 3γV logM

M
+ O(M−1/2), (3.13)

β(V ) = −M
γ

+ 3V logM

(
2γ

M

)1/2

+ O(1). (3.14)

Equation (3.13) is effectively a linear relation between the effective contact angle x0

and the contact-line speed, which with (3.14) can be integrated with respect to time
(using 3.2) to obtain

x0(t) =

(
2M

γ

)1/2

− exp

[
−M(t− t0)

3γ logM

]
, (3.15)

β(t) = −M
γ

+

(
2M

γ

)1/2

exp

[
−M(t− t0)

3γ logM

]
(3.16)

for some t0. Notice that x0 → (2M/γ)1/2 and β → −M/γ as t → ∞, in agreement
with the asymptotic static results (2.11), (2.12) for k = 0. Comparisons between (3.15),
(3.16) and numerical results are presented in § 3.2.3 below.

3.2.2. Rapid initial spreading

Equation (3.13) suggests that earlier in spreading, when x0 is far from its equilibrium
point, the speed of the corner is

V =
M3/2

logM
V̂ , (3.17)

for some V̂ = O(1), so that the expansion in (3.4) is effectively in powers of (logM)−1.
We now solve for h1 assuming B2 = 0 in (3.7), so that c ≈ 8.042 for γ = 1. Even
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without the quadratic term, (3.7) exhibits a non-uniformity for sufficiently large z,
indicating that a new physical balance must be considered here.

For large z (and large h), the dominant balance of terms in (3.3) is (3.10), which
occurs in the bending region (figure 6), between the corner and outer regions. To
capture the way in which viscous forces cause a weak variation in membrane slope,
we write

h = M1/2(x− x0)f(ζ), ζ =
log(x− x0)

logM
, (3.18)

and then (3.10) becomes

f2

(
fζζζ

(logM)2
− fζ

)
= 12V̂ . (3.19)

Thus, with error O(1/(logM)2), f2fζ = −12V̂ , so that

f = [36V̂ (ζ0 − ζ)]1/3 (3.20)

for some ζ0. The outer limit of the corner solution (3.7), expressed in terms of f and
ζ, becomes

f ∼ (2/γ)1/2 − 6γV̂ (ζ + 1
2
) + . . . (ζ → − 1

2
). (3.21)

We therefore set ζ0 = − 1
2

+ (2/γ)3/2/(36V̂ ), ensuring continuity of f and fζ across

ζ = − 1
2
, giving

f(ζ) = [(2/γ)3/2 − (ζ + 1
2
)(36V̂ )]1/3. (3.22)

Note that while (3.10) suggests that membrane slopes might fall to O(V 1/3) across
the bending region, i.e. to O(M1/2/(logM)1/3), (3.22) (which must remain positive)
indicates that the membrane slope remains O(M1/2) here.

We suppose that the bending region matches onto the outer solution when
log(x− x0) = (logM)υ for some 0 < υ < 1; at the boundary, where ζ ≈ 1/(logM)1−υ ,
this gives a slope

f ∼ [(2/γ)3/2 − 18V̂ ]1/3 (3.23)

to leading order in (logM)υ−1, which matches to the slope x0 in (3.8). Setting β = − 1
2
x2

0,
we obtain

x0(V ) = [(2M/γ)3/2 − 18V logM]1/3, (3.24)

β(V ) = −M
γ

[
1− 18V logM

(2M/γ)3/2

]2/3

. (3.25)

As the corner reaches an O(1) distance from its equilibrium location, V̂ falls and
linearization of (3.24), (3.25) for V̂ � 1 yields (3.13), (3.14). At earlier times, when
spreading is more rapid, the neglected terms involving powers of 1/ logM will be
appreciable unless M is extremely large in magnitude. Below, we test the accuracy of
(3.24), (3.25) against numerical solutions of the full problem.

The shape of the film deposited behind the moving corner is given by (3.6), i.e.

h = 1 +
c

M3/2

[
(2M/γ)3/2 − x3

18 logM

]
. (3.26)

This is consistent with the pressure distribution behind the advancing corner in
figure 3(b). There is an analogy here with the thickness of a film depoisted behind an
advancing meniscus (Landau & Levich 1942; Bretherton 1961); in that case also, a
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Figure 8. Symbols show corner position x0 ≈ xmin + 0.55 (which is also the effective dynamic
contact angle) computed numerically for M = 100, γ = 1 versus corner speed V = dxmin/dt. Also
shown are (3.24) (dashed) and (3.13) (solid).

faster-moving meniscus deposits a thicker film. Equation (3.26) can be used to provide
an initial condition for (3.1) in the subsequent draining regime.

3.2.3. Comparison with numerical solutions

The symbols in figure 8 show numerical estimates of the relation between x0 and
V . Since xmin ≈ xc−0.55 at the end of the spreading phase, we plot xmin +0.55 to give
a numerical estimate of x0, and take V ≈ dxmin/dt. Also shown are predictions of x0

versus V given by (3.13) (the linear relation for small V ) and (3.24). All three results
agree well for small V . The cubic behaviour in (3.24) is evident in the numerical
data for large V ; the asymptotics capture the qualitative behaviour well. The figure
clearly demonstrates that viscous bending of the membrane is a significant effect in
cell spreading, causing the effective contact angle x0 to fall nonlinearly with increased
spreading speed.

The rate of cell spreading can be found parametrically by solving (3.2) and (3.24).
With M = 100 and γ = 1, (3.24), (3.25) imply x0 = 0 and β = 0 when V ≈ 34.121.
We integrated from this point at t = t0, choosing t0 = 1.1 to give reasonable fit
to the numerical solutions. The asymptotic predictions of x0(t) and β(t) using (3.2),
(3.24), (3.25) are plotted as dashed lines in figures 9 and 4(a) above, with symbols
showing corresponding numerical solutions. Again we use xmin + 0.55 as a numerical
approximation of x0. Also shown in each figure is the corresponding exponential
relation (3.15), (3.16). As expected, the exponentials are accurate at late times, while
the nonlinear relations (3.24), (3.25) extend the agreement at early times.

Given that the error in the asymptotic model is larger than O(1/ logM) ≈ 0.2
early in spreading, falling to O(1/M) at late times, agreement between numerics and
asymptotics is very satisfactory. The asymptotics highlight the effects of trapped fluid
ahead of the advancing corner: spreading rates are limited by the rate at which this
fluid can be squeezed out of the shrinking gap between the cell and the wall; high fluid
pressures cause bending of the membrane sufficient to produce a nonlinear relation
between effective contact angle and the contact line speed. Only late in spreading,
when the corner is near its equilibrium, is the angle–speed relation linear.
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Figure 9. Symbols show x0 ≈ xmin(t) + 0.55 versus time for M = 100, γ = 1 taken from the
numerical solution of (2.14), (2.15). The dashed line shows x0(t) obtained from (3.2), (3.25); the
solid line shows (3.15).

4. Aspiration off an adhesive wall
We have seen how adhesive forces can pull a cell normally onto a wall, so that

ultimately it takes up a static configuration with a flat base (in 0 6 x < xc = (2M/γ)1/2,
where h = 1), connected by a short transition region of width O(M−1/2) to an outer
region in which the cell is circular, such that the effective contact angle where the
circular part of the cell meets the wall is (2M/γ)1/2 (in (x, h) variables). We now
examine the reverse process, in which a point force is applied to the top of the cell,
pulling it vertically upwards from the wall. This is modelled using (2.14), (2.15) with
k > 0, taking the k = 0 equilibrium configuration as an initial condition. Numerical
results are presented in § 4.1. We will show in § 4.2 that much of the aspiration process
can be understood using a quasi-steady asymptotic peeling analysis.

4.1. Numerical results

As in § 3.1, we illustrate aspiration of a cell off an adhesive wall with M = 100 and
γ = 1. We solve (2.14), (2.15) numerically, ramping up k so that it is proportional to
1
2
(1 − cos(πt/tr)) for 0 6 t < tr = 0.2, and then held constant thereafter. The critical

value of k for complete removal of the cell from the wall is k =
√

2M/γ ≈ 14.14, so
setting k = 15 we expect the cell to leave the wall completely in finite time.

Figure 10 shows h(x, t) and p(x, t) during aspiration for k = 15. As soon as the
point force is applied to the cell tip, the effective contact gradient between cell and
wall is raised, leading to a marked increase in membrane curvature in the corner
region, and correspondingly a locally low film pressure. The low pressure provides
a dynamic adhesive force, and is typical of peeling motions (McEwan & Taylor 1966;
Jensen et al. 2002). Figure 11 shows the position of the corner in the membrane
during aspiration. The corner region propagates towards x = 0, with its propa-
gation speed falling with time. If k < (2M/γ)1/2, the corner comes to rest at its
appropriate equilibrium location xc = (2M/γ)1/2 − k. For the example with k = 15,
the corner reaches x = 0 once t ≈ 0.55; thereafter the cell is removed from the
wall. Figure 12 shows the height of the cell centre Dc above the wall versus time,
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Figure 10. Solutions of (2.14), (2.15) with M = 100, γ = 1 and k = 15, showing (a) film depth and
(b) pressure. At t = 0 the membrane is in equilibrium and p = 0 (solid). Subsequent solutions have
time increments of 0.02; the cell membrane moves from right to left with time.

where Dc is given by

Dc(t) = r cos(kε1/2) + εβ(t)

= 1 + 2kε1/2/π− 25k2ε/4π− k2ε/2 + εβ(t) + o(ε), (4.1)

assuming 1 � M � ε−1/3. The cell centre rises sharply away from the wall as k is
ramped up (for 0 6 t < 0.2, not shown fully in figure 12) and then then moves more
slowly while the peeling is completed. For k > (2M/γ)1/2 the cell then rises abruptly
once more (at t ≈ 0.54 for k = 15) as it detaches from the wall; for lower values of k
the cell approaches a new equilibrium position. (We have illustrated this result with
very small values of ε, to ensure the expression for Dc in (4.1) is strictly asymptotic.)

4.2. Peeling asymptotics

We seek here to capture as far as possible the results presented in figures 10–12 using
a quasi-steady asymptotic peeling analysis, following closely the results presented in
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Figure 11. Lines show x0(t) given by (4.4) for M = 100, γ = 1 and k = 4, 8, 12, 15. The symbols are
corresponding data from the numerical solution of (2.14), (2.15), taking x0 ≈ xmin.
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Figure 12. Symbols show Dc(t) (the height of the centre of the cell above the plane) obtained from
the numerical solution of (2.14). Parameter values are M = 100, γ = 1 and (k, ε) = (i) (15, 1×10−7),
(ii) (12, 1.56× 10−7), (iii) (8, 3.54× 10−7) with k ramped up for 0 6 t < 0.2. Solid lines show Dc(t)
from (4.1) with β(t) from (4.5) for the same parameter values but with k constant.

§ 3.2. For the parameter values illustrated here, it is sufficient to consider the low-speed,
three-region asymptotic problem described in § 3.2.1 and sketched in figure 7.

The shape of the cell membrane in the quadratic outer region (figure 7) is

h(x) ∼ 1
2
x2 + kx+ β = 1

2
(x− x0)

2 + φ(x− x0) + (β + kx0 + 1
2
x2

0), (4.2)

where φ = x0 + k is the effective contact angle that the outer solution makes with the
wall at x = x0. We define the peeling speed as V = x0t(t) < 0, as in (3.2). Introducing
a corner region around x = x0 with z =

√
M(x − x0) = O(1), we obtain (3.3) once
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again. Matching the outer limit (3.7) of the expansion (3.4) to (4.2), we find

VB2

M1/2
=

1

2
, φ = x0 + k =

(
2M

γ

)1/2

− 3γV logM

M
, β = −kx0 − 1

2
x2

0. (4.3a–c)

Equation (4.3b) shows how the dynamic contact angle increases with peeling speed
(recall that V < 0). If k < (2M/γ)1/2, so that the cell comes to a new equilibrium,

then (4.3) with V = 0 predicts a static contact angle and contact length φ =
√

2M/γ

and x0 =
√

2M/γ − k respectively, consistent with the static analysis in § 2.3. From
(3.2), we can integrate (4.3b) with respect to time, yielding

x0(t) =

(
2M

γ

)1/2

− k + exp

[
−M(t− t0)

3γ logM

]
, (4.4)

β(t) = −M
γ

+
k2

2
−
(

2M

γ

)1/2

exp

[−M(t− t0)
3γ logM

]
− 1

2
exp

[
2M(t0 − t)
3γ logM

]
. (4.5)

Figure 11 plots (4.4) as lines for M = 100, γ = 1 and k = 4, 8, 12, 15 to give a
comparison with the numerical data from the solution to (2.14). The constant of
integration t0 is chosen in each case so that the expression given in (4.4) agrees with
the numerical data at t = 0.3. After short initial transients, the overall agreement
between numerics and asymptotics is excellent. Figure 12 shows (4.5) in (4.1) with k
constant to give a comparison of Dc with the numerical data. The initial movement
of the cell centre away from the wall is not captured since we have not ramped k, but
once the full force is applied to the cell tip (4.5) captures the motion of the cell centre
well. As t→∞, (4.5) predicts β → −M/γ + k2/2, as required by (2.12) and (4.1).

5. Cell rolling
We have demonstrated how cell sedimentation onto an adhesive wall, and aspiration

off it, are dominated by quasi-steady spreading and peeling motions respectively. We
show now how these motions also arise naturally when a two-dimensional cell tank-
treads slowly along an adhesive wall in an external shear flow. This enables us to
derive a relation between rolling speed and imposed shear rate as a function of M
and γ.

We consider the configuration illustrated in figure 13. We again assume that
ε � εM/γ � 1, so that (as in figure 1b) the cell is almost circular away from the
wall, and is in close contact with the wall over a short region of dimensional length
ε1/2LR = O(R(εM/γ)1/2) � R, where R is the cell radius. We suppose that the cell
is exposed to a (dimensional) shear flow with velocity (GY ?, 0) where µGR/τ � 1,
so that the membrane tension is sufficiently strong compared to the imposed shear
for the cell to remain nearly circular on lengthscales comparable to R. On these
lengthscales, the cell resembles a rigid cylinder of radius R lying on a plane wall. Such
a cylinder experiences a force per unit length parallel to the wall of F? = 4πµRG
(Schubert 1967; Davis & O’Neill 1977).

This force tilts the cell forwards slightly in the direction of the flow, decreasing
the effective advancing contact angle ε1/2Θ− and increasing the effective receding
contant angle ε1/2Θ+ (figure 13) from their equilibrium values Θ± = (2M/γ)1/2. The
cell is assumed to roll (tank-tread) slowly and steadily over the wall at some speed
V? = (τε3/2/µ)V , with spreading and peeling taking place at the front and rear of the
cell respectively. We seek V in terms of M, γ and F?.
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Figure 13. Schematic diagram of the outer (a) and inner (b) regions of a rolling cell.

In the presence of shear, a horizontal force balance on the cell requires

F? = τ(cos(ε1/2Θ−)− cos(ε1/2Θ+)). (5.1)

Here membrane tension acting in slightly different directions at the effective contact
lines balances the hydrodynamic drag on the cell. Writing F? = ετF , (5.1) becomes

F = 1
2
(Θ+2 −Θ−2) (5.2)

with error O(ε). Away from the wall the cell is largely circular with radius r =
1+O((εM/γ)3/2) (see § 2.3), so the geometrical relation

√
εL = r sin

√
εΘ−+r sin

√
εΘ+

implies

L = Θ− +Θ+ (5.3)

with error O(ε, (εM/γ)3/2). We introduce the coordinate ε1/2x along the wall, and write
the gap between the cell and the wall as εh(x). Then, as illustrated in figure 13(b), the
inner limits of the outer circular solution can be written

h ∼ 1
2
x2 −Θ+x (x→ −∞) (5.4)

and

h ∼ 1
2
(x− L)2 +Θ−(x− L) (x→∞). (5.5)

With z = x−L+Θ−, (5.5) becomes h ∼ 1
2
z2− 1

2
Θ−2 for z →∞, exactly the boundary

condition used in spreading, (3.8). We can then exploit the spreading and peeling
analyses of § 3.2 and § 4.2, relying on the nonlinear relation between contact angle
and contact line speed (3.13) with α = 0, so that the front and rear contact angles are

Θ± = [(2M/γ)3/2 ± 18(logM)V ]1/3, (5.6)

from which F is obtained using (5.2). This relation can be simplified by setting
(Θ−, Θ+, L) = (2M/γ)1/2(Θ̄−, Θ̄+, L̄), F = (M/γ)F̄ , V = ((2M/γ)3/2/18 logM)V̄ , so
that

Θ̄± = (1± V̄ )1/3 (5.7)
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Figure 14. Scaled rolling velocity (V̄ ), front and rear contact angles (Θ̄−, Θ̄+) and half contact
length (L̄/2) as fuctions of scaled force on cell F̄ . Solid lines show nonlinear relations (5.7), (5.8),
dashed lines show linearized relations (5.9).

and

F̄ = (1 + V̄ )2/3 − (1− V̄ )2/3, L̄ = (1 + V̄ )1/3 + (1− V̄ )2/3. (5.8)

These relations are shown as solid lines in figure 14, alongside their linearized forms
for V̄ � 1, for which

Θ̄± ≈ 1± 1
3
V̄ , F̄ ≈ 4

3
V̄ , L̄ ≈ 2. (5.9)

These relations represent the case in which viscous forces cause only weak bending
of the membrane outside each contact line.

Figure 14 shows that at low speeds the rolling speed initially rises linearly with
the imposed shear rate, but as the driving force increases, the front and rear contact
angles (and the contact length) fall increasing rapidly, causing a plateau to develop in
the speed–force relation. Once F̄ = 22/3, the front angle falls to zero; for larger shear
rates the assumptions of the present approximation fail, and either a new form of
steady structure emerges or else the steady solution terminates. Further implications
of these results are discussed below.

6. Discussion and conclusions
We have presented here a continuum, deterministic model for a cell adhering to

a plane surface. To keep the model tractable, numerous features of real cells (such
as neutrophils) have been neglected. These include the bending stiffness of the cell
membrane, cell membrane roughness (due to excess area stored as membrane folds,
or due to microvilli), the effects of non-specific forces and non-uniform permeability
of the cell–plane gap, arising for example due to the presence of glycocalyx, and the
motion of bonds within the membrane. Particular weaknesses of the present model
include the assumption of a two-dimensional rather than three-dimensional geometry,
the assumption of equilibrium bond kinetics, and the neglect of the rheology of the cell
interior, which would provide a viscoelastic resistance to spreading, peeling and rolling.
The present model can be extended to incorporate these features. Binding mediated
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stochastically by small numbers of individual bonds on the tips of individual microvilli
is harder to capture within the present framework. Nevertheless, it is instructive to
reflect on the predictions of the present model, both in terms of fundamental fluid
mechanics and in terms of cell-adhesion applications.

Taking bond lengths to be substantially smaller than the cell radius (ε � 1), we
showed that macroscopic static cell configurations are governed (according to the
present model) by the single parameter

εM

γ
=
Fa

τ
, Fa = AtotKeqkBT , (6.1)

which measures the relative strength of the total adhesive force per unit length
Fa (or adhesive energy density, Damiano et al. 1996) to membrane tension. For
ε � (Fa/τ) � 1, the cell binds to the wall with a small but well-defined equilibrium
contact angle

θ0 = (2Fa/τ)
1/2, (6.2)

consistent with the predictions of Evans (1985) and Dembo et al. (1988).
Using lubrication theory, we modelled sedimentation (§ 3), where adhesive forces

pull an initially circular cell normally onto the wall. Initially a small segment of
membrane is pulled rapidly onto the wall, displacing fluid sideways and causing
the centre of the cell to be briefly lifted upwards (which we denote the capture
phase, see figure 4). Then the width of the bound region increases until it reaches its
equilibrium length (the spreading phase, figure 3), pulling the cell centre downwards
and trapping a small amount of fluid between the bound membrane and the wall.
Some of this fluid then drains slowly out from beneath the cell until the system is
in complete equilibrium. Using an asymptotic analysis, taking M � 1, we found that
the dimensionless spreading speed is O((M/γ)3/2/ logM), and that spreading occurs
over a time of O(γ(logM)/M). Dimensionally, the adhesive timescale is

Ta =
Rµ

Fa
log

(
κAtotKeqRλ

τ

)
, (6.3)

which is only weakly dependent on membrane tension, bond stiffness and bond
length, but strongly dependent on fluid viscosity and bond density. Ta is controlled
primarily by a ratio of viscous to adhesive forces, showing that the rate of spreading is
controlled by the speed at which fluid can be squeezed out of the narrow gap between
the cell and the plane. To model the reverse process (aspiration), a point force is
applied to the top of a bound cell, pulling the cell off the wall (§ 4). Our analysis
shows that the membrane peels away from the wall also over an O(Ta) timescale, at
least for forces just large enough to lead to complete cell detachment.

A key aspect of the asymptotic description of both spreading and peeling is the
identification of a relationship between the effective contact angle θ of the cell (where
the nearly circular outer solution approaches the wall), the speed V? of the effective
contact line and the equilibrium contact angle θ0 (which is also the microscopic
contact angle when the gap thickness is O(λ)). In dimensional terms, we find that
(from (3.13))

θ3 ≈ θ3
0 − 18

(
µV?

τ

)
log

(
κAtotKeqRλ

τ

)
. (6.4)

In spreading, V? > 0 and θ is reduced below its equilibrium value; in peeling V? < 0
and θ exceeds θ0. In (6.4) we recognise µV?/τ ≈ (Fa/τ)

3/2 � 1 as a capillary number.
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In spreading, fluid is trapped in the closing gap between the membrane and the wall:
in being squeezed out of the gap, it elevates pressures and causes the membrane to
bulge, lowering the effective contact angle according to (6.4). In peeling, fluid has to
be sucked into the opening gap: the low fluid pressures cause the membrane to bend
in the opposite direction. Equation (6.4) is typical of nonlinear relations between
contact angle and contact line speed (Oron et al. 1997), and arises in a wide class
of thin-film problems (King 2001), although it suffers from the usual weaknesses of
asymptotics involving logarithmic corrections which in practical situations can have
limited accuracy. As observed in pure fluid systems, the effective dynamic contact
angle depends (albeit weakly) on the macroscopic dimensions of the cell (in contrast
to θ0, which is entirely determined by a local force balance).

By assuming that bond formation and breakage occur much more rapidly than the
adhesive timescale Ta, so that binding is always in equilibrium, we cannot distinguish
between the ‘catch’ and ‘slip’ bonds introduced by Dembo et al. (1988) (for which the
unbinding rate of a bond either decreases or increases with applied force). Accounting
for such effects, Dembo et al. obtained a relation between peeling speed, imposed
tension and peeling angle. Future studies should examine how non-equilibrium kinetics
and hydrodynamic forces (through (6.4)) together influence adhesion processes; their
interaction has been incorporated only implicity in the existing computational models
of Lei et al. (1999) and Dong et al. (1999).

An attractive feature of the present equilibrium assumption is that the binding forces
can be represented as an adhesive potential which is long-range attractive, short-range
repulsive, entering the model as an effective conjoining/disjoining pressure (see (2.13)).
Aspects of the present analysis can therefore be carried over to problems involving
hole growth in a rupturing liquid film (where a receding contact line corresponds to
what we here call spreading) or problems with a driven advancing contact line (which
we call peeling). The low fluid pressures ahead of the advancing corner in peeling
suggest the possibility of a spanwise fingering instability (McEwan & Taylor 1966).
As is well known from studies of thin liquid films subject to long-range van der Waals
forces, an attractive potential can drive spontaneous long-wave instabilities leading
to film rupture (Williams & Davis 1982; Oron et al. 1997). Equation (2.14) shares this
property for initially uniform film thicknesses h0 > 1 + γ−1/2, for which f′(h0) < 0,
where f(h) = M(h−1) exp(− 1

2
γ(h−1)2). Such instabilities have been recognized in the

context of cell adhesion as a possible mechanism for sites of focal adhesion (Gallez
& Coakley 1986; Ward & Hammer 1993; Gallez, De Wit & Kaufman 1996). Under
boundary conditions (2.15), however, we found no evidence of such instabilities for
the parameter values we investigated.

The relation (6.4) was used in § 5 to analyse the tank-treading rolling motion of
a nearly circular cell adhering to a wall in a shear flow, when the rolling speed is
determined by viscous dissipation in the suspending fluid. The shear force on the cell
is balanced by membrane tension acting at the front and rear effective contact lines;
the rear contact angle (where the membrane is peeling off the wall) is larger than the
front contact angle (where the membrane is spreading onto the wall). For a low shear
rate G (with RGµ� Fa � τ), so that each contact angle differs only marginally from
θ0, the dimensional rolling speed is (from (5.9))

V? =
πRG

3

(
2Fa
τ

)1/2/
log

(
κAtotKeqRλ

τ

)
, (6.5)

which is smaller than the free-stream speed RG by a factor comparable to the
equilibrium contact angle θ0. Surprisingly, (6.5) predicts that rolling speed increases
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with increased adhesive force Fa. The explanation for this is that increasing Fa
(subject of course to the constraint Fa � τ) increases the equilibrium contact angle,
increasing the mobility of the suspending fluid near each contact line and so increasing
the mobility of the cell as a whole. Equation (6.5) is also independent of viscosity
µ: increasing µ increases the drag on the cell but also increases the resistance to
flow near the contact lines, and the two effects cancel. Whether this mechanism
might explain a viscosity-independent rolling-speed/shear-rate relationship reported
for rolling leukocytes (Smith et al. 2001) is at present being investigated. Independence
of µ may be an artefact of the two-dimensional geometry, since in three dimensions
fluid trapped near contact lines can escape sideways around the base of the cell as
well as by moving parallel to the primary flow direction. Also, once RGµ = O(Fa)
the nonlinearity in (6.4) becomes important, and the velocity–force relation (5.8)
depends explicitly on µ (figure 14). Viscous effects reduce rolling speeds to beneath
that predicted by (6.5), and suggest the existence of the plateau seen in velocity–force
curves found experimentally (Atherton & Born 1973) and theoretically in other studies
(Lei et al. 1999). However, once V? is large enough for the advancing contact angle
to reach zero according to (6.4), the assumed asymptotic structure breaks down. Kan
et al. (1999) show how a long region of fluid can be trapped beneath the front of an
adherent cell; our analysis may provide an estimate of when this behaviour first arises.

In a recent computational study, Dong et al. (1999) computed transient adhesion
events for a model two-dimensional cell bound to a wall in a shear flow. They assumed
that the net force on the cell is balanced by tensile forces in a short peeling zone at
the cell’s trailing edge. While the present study differs significantly from this one both
in terms of the model and the parameter ranges investigated, there are important
qualitative features common to both studies. Our model demonstrates, for example,
that at low shear rates (µRG � Fa) high pressures in the suspending fluid where
the front of the cell is spreading onto the plane can be just as important as low
pressures in the peeling region in the overall force balance (and in practice these
high pressures may be important in squashing glycocalyx immediately ahead of the
advancing cell to expose ligand molecules), although the peeling region dominates the
force balance once µRG = O(Fa). Our approach also identifies the natural asymptotic
structure of the ‘peeling zone’ postulated in the computational model, for membranes
characterized by tension alone.

In summary, the present model shows how viscous forces in the suspending fluid
can (in principle) limit the rate at which a cell spreads, peels and rolls over an ad-
hesive surface. However to test definitively whether or not the hydrodynamical effects
described are biologically significant requires further refinements of the model (ac-
counting particularly for three-dimensionality, membrane bending forces, cytoplasmic
rheology and nonequilibrium binding kinetics).

O. E. J. is indebted to Donald P. Gaver and David Halpern for invaluable discus-
sions during the initial development of the model, and acknowledges enlightening
conversations with John King and Klaus Ley. S. R. H. was supported by an EPSRC
Studentship.
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Wu, S., Hoxter, B., Byers, S. W. & Tözeren, A. 1998 Role of cytoskeleton and deformability in
laminin-mediated cell rolling. Biorheology 35, 37–51.

Zhao, Y., Chien, S. & Weinbaum, S. 2001 Dynamic contact forces on leukocyte microvilli and their
penetration of the endothelial glycocalyx. Biophys. J. 80, 1124–1140.

Zhu, C. 2000 Kinetics and mechanics of cell adhesion. J. Biomech. 33, 23–33.

Zhu, C., Bao, G. & Wang, N. 2000 Cell mechanics: mechanical response, cell adhesion and molecular
deformation. Annu. Rev. Biomed. Engng 2, 189–226.


